بسوالله الرحمن الرحيم

إمتحان نهائى الثانوية العامة

المبحث / رياضيات الفرع / علوم إنسانية الزمن / ساعتان

السلطة الوطنية الفلسطينية وزارة التربية والتعليم مديرية التربية والتعليم / شرق غـــزة

القسم الإول: يتكون هذا القسم من أربعة أسئلة وعلى المشترك أن يجيب عنها جميعاً.

السؤال الأول : إختر الإجابة الصحيحة ، ثم ضع إشارة (×) في المكان المخصص في دفتر الإجابة : (١٥ علامة)

المصفوفة
$$\begin{pmatrix} \omega & \varepsilon \\ \lambda & \zeta \end{pmatrix}$$
 ليس لها نظير ضربي إذا كانت قيمة ω تساوي ω

ج) ۲۰

۲) إذا كان $\begin{pmatrix} 0 & \cdot \\ 1 & w \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ 1 & w \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ 1 & w \end{pmatrix}$ إذا كان $\begin{pmatrix} 0 & 1 \\ 1 & w \end{pmatrix}$ ب) ہ ، ۲ ج 🔻 ہ

 $m{\pi}$) إذا كانت ع $m{\pi}=m{\pi}$ م، رتبة ع $m{\pi}$ $m{\pi}$ ، ورتبة س $m{\pi}=m{\pi}$ ، فإن رتبة ص $m{\pi}$

اً) ۲×۳ ب ۳×۲ أ

ا إذا كان $\omega = (V)^{\gamma}$ فإن $\frac{2\omega}{2m}$ تساوي $\frac{2}{3}$

أ، ٥

ب) ۱٤ د) صفر

۱) γ () γ

ب ۳ ج کد شد اندال د، ۲۰ أ) ٢

(1) = (1)

ب) ۳ أ) -٢ ۲ () ج) ۸

(7) إذا كان متوسط تغير الاقتران ق(m) عندما تتغير m من $m_1 = 7$ إلى $m_7 = 0$ هو f وكان قf

اً) ۱۲ ب) ۳۲ ٤ (٤

ب) ٥ ج) ١٣ د) ۳ أ) ٤

ج) ٣ أ) ١ د) ه

۱۰) من الجدول التالي قيمة f التي تجعل r هي :

0	۲	P	س
٧,٧	٠,١	٠,٢	ل(س)

د) ٥ ج) ٣ ب) ١

السؤال الثاني:

(۲۵ علامة)

 $Y = w^{-1}$ عنيد س $x = y^{-1}$ بإستخدام تعريف المشتقة عند نقطة ، أوجد قَرَس) للإقتران قِ (سِ $y = y^{-1}$ عنيد س

٣) أوجد ر ٢ + ٢ س ٤ س

(۴۵ علامة)

olma guu. Maqda

۲) |۱ | + | ب

السؤال الثالث :

(۱) إذا كان ق(س) = $m^{-1} - m$ حيث $m \in J$ أوجد القيم القصوبي المحلية للاقتران ق(س) باستخدام اختبار المشتقة .

٧) أوجد ما يلي

(1)
$$\int (\frac{3}{m} - m^{7}) \approx m$$
(2) $\int (\frac{3}{m} - m^{7}) \approx m$
(3) $\int (\frac{3}{m} - m^{7}) \approx m$
(4) $\int (\frac{3}{m} - m^{7}) \approx m$
(5) $\int (\frac{3}{m} - m^{7}) \approx m$
(7) $\int (\frac{3}{m} - m^{7}) \approx m$
(8) $\int (\frac{3}{m} - m^{7}) \approx m$
(9) $\int (\frac{3}{m} - m^{7}) \approx m$
(1) $\int (\frac{3}{m} - m^{7}) \approx m$
(1) $\int (\frac{3}{m} - m^{7}) \approx m$
(1) $\int (\frac{3}{m} - m^{7}) \approx m$
(2) $\int (\frac{3}{m} - m^{7}) \approx m$
(3) $\int (\frac{3}{m} - m^{7}) \approx m$
(4) $\int (\frac{3}{m} - m^{7}) \approx m$
(5) $\int (\frac{3}{m} - m^{7}) \approx m$
(7) $\int (\frac{3}{m} - m^{7}) \approx m$
(8) $\int (\frac{3}{m} - m^{7}) \approx m$
(9) $\int (\frac{3}{m} - m^{7}) \approx m$
(1) $\int (\frac{3}{m} - m^{7}) \approx m$
(1) $\int (\frac{3}{m} - m^{7}) \approx m$
(1) $\int (\frac{3}{m} - m^{7}) \approx m$
(2) $\int (\frac{3}{m} - m^{7}) \approx m$
(3) $\int (\frac{3}{m} - m^{7}) \approx m$
(4) $\int (\frac{3}{m} - m^{7}) \approx m$
(5) $\int (\frac{3}{m} - m^{7}) \approx m$
(7) $\int (\frac{3}{m} - m^{7}) \approx m$
(8) $\int (\frac{3}{m} - m^{7}) \approx m$
(9) $\int (\frac{3}{m} - m^{7}) \approx m$
(1) $\int (\frac{3}{m} - m^{7}) \approx m$
(1) $\int (\frac{3}{m} - m^{7}) \approx m$
(2) $\int (\frac{3}{m} - m^{7}) \approx m$
(3) $\int (\frac{3}{m} - m^{7}) \approx m$
(4) $\int (\frac{3}{m} - m^{7}) \approx m$
(5) $\int (\frac{3}{m} - m^{7}) \approx m$
(7) $\int (\frac{3}{m} - m^{7}) \approx m$
(8) $\int (\frac{3}{m} - m^{7}) \approx m$
(9) $\int (\frac{3}{m} - m^{7}) \approx m$
(1) $\int (\frac{3}{m} - m^{7}) \approx m$
(1) $\int (\frac{3}{m} - m^{7}) \approx m$
(2) $\int (\frac{3}{m} - m^{7}) \approx m$
(3) $\int (\frac{3}{m} - m^{7}) \approx m$
(4) $\int (\frac{3}{m} - m^{7}) \approx m$
(5) $\int (\frac{3}{m} - m^{7}) \approx m$
(7) $\int (\frac{3}{m} - m^{7}) \approx m$
(8) $\int (\frac{3}{m} - m^{7}) \approx m$
(9) $\int (\frac{3}{m} - m^{7}) \approx m$
(1) $\int (\frac{3}{m} - m^{7}) \approx m$
(1) $\int (\frac{3}{m} - m^{7}) \approx m$
(2) $\int (\frac{3}{m} - m^{7}) \approx m$
(3) $\int (\frac{3}{m} - m^{7}) \approx m$
(4) $\int (\frac{3}{m} - m^{7}) \approx m$
(5) $\int (\frac{3}{m} - m^{7}) \approx m$
(7) $\int (\frac{3}{m} - m^{7}) \approx m$
(8) $\int (\frac{3}{m} - m^{7}) \approx m$
(9) $\int (\frac{3}{m} - m^{7}) \approx m$
(10) $\int (\frac{3}{m} - m^{7}) \approx m$
(11) $\int (\frac{3}{m} - m^{7}) \approx m$
(12) $\int (\frac{3}{m} - m^{7}) \approx m$
(13) $\int (\frac{3}{m} - m^{7}) \approx m$
(13) $\int (\frac{3}{m} - m^{7}) \approx m$
(14) $\int (\frac{3}{m} - m^{7}) \approx m$
(15) $\int (\frac{3}{m} - m^{7$

السؤال الرابع:

۱) حل نظام المعادلات الأتي بطريقة كرامر m + 7 = 0 ، m + 7 = 0

٢) أوجد معادلة المماس لمنحنى الإقتران ق $(m) = m^7 - 7m + 0$ عند النقطة التي إحداثيها السيني = 7

 $(8-1)^{-1}$ س متغیر عشوائی توزیعه الإحتمالی کما یلی $(8-1)^{-1}$ ، $(8-1)^{-1}$) ، $(8-1)^{-1}$) وجد ت $(8-1)^{-1}$) $(8-1)^{-1}$

القسم الثاني: يتكون هذا القسم من سؤالين ، وعلى المشترك أن يجيب عن أحدهما فقط .

السؤال الخامس:

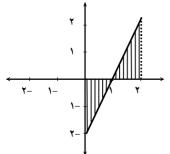
۱) إذا كان
$$\frac{m}{r}$$
 $\frac{Y}{r}$ = - . 1 ، أوجد قيمة س $\frac{Y}{r}$

٢) تتمدد صفيحة مربعة الشكل بحيث تظل محتفظة بشكلها أوجد متوسط التغير في مساحة الصفيحة بالنسبة لطول ضلعها
 عندما يتغير طول الضلع من ٤سم إلى ٤,١ سم

٣) أوجد ع<u>ص</u> لكل من :

$$\frac{1}{3} - \frac{1}{4} = \frac{1$$

السؤال السادس:


(١) أوجد قاعدة الإقتران الذي ميل المماس لمنحناه عند إي نقطة يعطى بالقاعدة قَرَس) = ٤ س - و إذا علمت أن ق(7) = 7٢) صندوق به ٥٠ مغلف منها ١٠ مغلفات تحمل كل منها جائزة بقيمة ١٠ دنانير و ١٥ مغلف كل منها يحمل جائزة بقيمة ديناران والباقى لا يحمل جوائز

٢) أوجد توقعك للمبلغ عند سحب أحد المغلفات عشوائياً

1) أكتب التوزيع الإحتمالي للمتغير س

 $\Upsilon - T = \Upsilon$ وحسب مساحة المنطقة المظللة في الشكل المجاور ، المحصورة بين منحنى ق

 $\mathbf{Y} = \mathbf{w}$, $\mathbf{v} = \mathbf{v}$, $\mathbf{v} = \mathbf{v}$

انتهت الأسئلة

انتهت الأسئا Jasan, Jara

أ , راند عيد العال احداد أساتذة متميز وان